LECTURE-4

Now, that we know what a group is, we would like to increase our understanding of it. One of the important ways to undurtand a group is through its subgroups. This is what we are going to study now.

As the name suggests, subgroups are subsets of a group, which themselves are groups. To undustand this let's de an example:-

Example 1- Consider the group $(\mathbb{Z},+)$ 1.1) Let $\mathbb{Z} \mathbb{Z}=\{\ldots .-6,-4,-2,0,2,4 \ldots\} \subset \mathbb{Z}$
one can easily check that $2 \mathbb{Z}$ satisfies all the properties of a group under addition \& $\because$ $2 \mathbb{Z} \subset \mathbb{Z} \Rightarrow(2 \mathbb{Z},+)$ is a subgroup of $(\mathbb{Z},+)$.
1.2) Now, consider the set $\{-1,0,1\} \subset \mathbb{Z}$. $\{-1,0,1\}$ contains the additive itentity (ie. 0) and also the inverse of every element bul it is not a group $: 1+1=2\{\{-1,0,1\}$. Hence it is not a subgroup of $(\mathbb{Z}, t)$.

So finally let's see the defuiction of a subgroup.

Definition:- Let $(G, \cdot)$ be a group. A subset $H$ of $G$ is called a SUBGROUP of $G$ if it itself is a group under the operation "." and we write $H \leq G$

Remark:- It is important to note that $H$ must be a group under the same operation as that of $G$.

Exercise:- Try to find some subgroups of all the examples of groups that we have seen.

Obsewe that every group comes equipped with two subgroups; the identity \& the whole group. ( $\{e\}$ is called the "trivial subgroup".)

A subgroup $H$ of $G$ is called a "proper subgroup". if it not the trivial subgroup or the group $G$ itself.

Subgroup Generated by an element:-

Before discussing subgroups generated by an element, let's see some definitions:

Definition:- Let $a, b \in G$, for any $k \in \mathbb{Z}$. the element $a^{k} \in G$ is defined by

$$
a^{k}= \begin{cases}\underbrace{a \cdot a \cdot a \cdot \ldots-a}_{k \cdot t i m e s} & , k>0 \\ \underbrace{}_{k}, & k=0 \\ \underbrace{}_{k \cdot k_{i m e s}^{-1} \cdot a^{-1} \ldots \cdot a^{-1}}, & k<0\end{cases}
$$

Exercise:- Prove that $\forall n, m \in \mathbb{Z}, a^{n} \cdot a^{m}=a^{n+m}$ and $\left(a^{n}\right)^{-1}=a^{-n}$ (ie the laws of exponents hold for elements en a group)

Definition:- (order of an element)
Let $a \in G$, the order of $a$, denoted by ord ( $a$ ) is the smallest positive integer $k$ such that $a^{k}=e$. If there is no such $k \in \mathbb{Z}$, ord $(a)=\infty$.

Example 1-Consider $\left(\mathbb{Z}_{6},+\right)$, and consider the element $3 \in \mathbb{Z}_{6}$. From previous definition $3^{k}=\underbrace{3+3+\ldots 3}_{k \text {-tunes }}(\bmod 6)$, so the $\operatorname{ord}(a)=2$ as
$3+3=6 \equiv 0(\bmod 6)$, which is the identity in $\mathbb{Z}_{6}$.

2- Consider $(\mathbb{Z},+)$, and consider $2 \in \mathbb{Z}$. clearly $\nexists k \in \mathbb{Z}$ st $2^{k}=\underbrace{2+2+\ldots 2}_{k \text { times }}=0$ $\Rightarrow$ ord (2) $=\infty$.

Definition:- Let $a \in G$, the "subgroup generated by $a "$ denoted by $\langle a\rangle$, is defined as

$$
\langle a\rangle=\left\{a^{k} \mid k \in \mathbb{Z}\right\}
$$

for example for $2 \in \mathbb{Z},\langle 2\rangle$ is just the set of even integers which we already proved to be a subgroup of $\mathbb{Z}$.

Even though it sens that $\langle a\rangle$ is always an infinite set, it can be finite.
for example, consider $3 \in \mathbb{Z}_{6}$ again then,

$$
\langle 3\rangle=\{0,3\} .
$$

Note that, $|\langle s\rangle|=\operatorname{ord}(3)$, this is not a coincidence !!, en fact

Exercise- show that $1\langle a\rangle \mid=\operatorname{ord}(a)$, for $a \in G$
Remark- Not all subgroups of a group are generated by a single clement of the group. for example, consider $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ and consider the subgroup $H=\{(0,0),(0,2),(2,0),(2,2)\}$, then this is not a subgroup generated by a single element.
$\qquad$

